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The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the
mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which
fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles
of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive
at results already confirmed by numerical simulations.
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I. INTRODUCTION

Reaction-diffusion front propagation in nonequilibrium
systems is a topic that has been receiving increasing attention
recently. The numerous possible applications of the theory,
of systems like flames[1], bacterial colonies[2], or popula-
tion genetics[3], is of course one of the reasons for this
recent interest. One of the most common approaches to this
problem has been the use of deterministic reaction-diffusion
equations, like the Fisher equation[3]. This equation, which
combines logistic growth with diffusion, is one of the most
important mathematical models in biology and ecology[4].
In one spatial dimension, the Fisher equation reads

]tU = D]xxU + aU − bU2. s1d

One can think of this equation as a mean-field description of
a reaction-diffusion process of a single species of random
walkersA undergoing the reactions of birthA→A+A at rate
a and annihilationA+A→0” at rateb/2. The analysis of this
equation is straightforward. Consider the boundary condi-
tions U→b/a when x→−` and U→0 when x→`. Thus
the linearly stable phaseb/a invades the linearly unstable
phase 0. Assuming a stationary front profileUsx,td=Usx
−vtd=Uszd and shifting variablesx→ÎD /ax, t→ t /a, and
U→ sa/bdU we get

U9 + cU8 + U − U2 = 0, s2d

wherec=v /ÎDa. The velocity of the front is controlled by
its edge; this means the region of the front that is closer to
the unstable phaseU=0. We can thus linearize Eq.(2)
around this value to get

U9 + cU8 + U = 0. s3d

The only physically acceptable solution to this equation is

Uszd , e−gz, s4d

and substituting Eq.(4) into Eq. (3) we get

c = g +
1

g
s5d

for arbitraryg. It is clear that the range of velocities is thus
cù2, and it was shown that the minimal velocity is selected
in the long-time limit[5]. We can thus conclude that, in this
limit, v=2ÎDa.

We will now show that this picture changes strongly when
internal fluctuations effects, due to the finitness and discret-
ness of the reactants, are taken into account.

II. FIELD THEORY

We will consider single-species particlesA undergoing
reactionsA→A+A at rates andA+A→0” at ratel. Further,
we suppose the particlesA performing a random walk in a
one-dimensional lattice with lattice spacingb. The exact de-
scription of the problem is given by the following master
equation:

dP„hnij;t…

dt
= o

i
FUdP„hnij;t…

dt
U

D
+ UdP„hnij;t…

dt
U

s

+ UdP„hnij;t…

dt
U

l
G , s6d

with

UdP„hnij;t…

dt
U

D
=

D

b2o
hej

fsne + 1dPs. . .,ni − 1,ne + 1, . . . ;td

− niPs. . .,ni,ne, . . . ;tdg, s7d

wherehej denotes the set of nearest-neighbor sites adjacent
to i andD is the diffusion constant,

UdP„hnij;t…

dt
U

s

= sfsni − 1dPs. . .,ni − 1, . . . ;td

− niPs. . .,ni, . . . ;tdg, s8d

and

UdP„hnij;t…

dt
U

l

= lfsni + 2dsni + 1dPs. . .,ni + 2, . . . ;td

− nisni − 1dPs. . .,ni, . . . ;tdg. s9d

For simplicity we will choose an uncorrelated Poisson distri-
bution as initial condition for our master equation:

P„hnij;t = 0… = e−Ns0dp
i

n0i
ni

ni!
, s10d

whereNs0d=oin0i. We can map this master equation descrip-
tion of the system onto a quantum-field-theoretic problem.
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This connection was first proposed by Doi[6], further eluci-
dated by Peliti[7], and a deep generalization of it can be
found in the influencing article by Cardy and Täuber[8]. We
can write this theory in terms of the second-quantized
bosonic operators

fai
†,ajg = di j , fai,ajg = 0, fai

†,aj
†g = 0, aiu0l = 0,

s11d

whose effect is to create or to annihilate particles at the cor-
responding lattice site:

ai
†u. . .,ni, . . .l = u. . .,ni + 1, . . .l, s12d

aiu. . .,ni, . . .l = niu. . .,ni − 1, . . .l, s13d

where we have defined the states as

uhnijl = p
i

sai
†dniu0l. s14d

Thus we can define the time-dependent state vector as

uFstdl = o
hnij

Pshnij;tduhnijl s15d

and claim that it obeys the imaginary time Schrödinger equa-
tion

d

dt
uFstdl = − HuFstdl, s16d

with the Hamiltonian

H = o
i
S−

D

b2o
hej

ai
†sae − aid − lf1 − sai

†d2gai
2

+ sf1 − ai
†gai

†aiD . s17d

Note that we recover Eq.(6) if we substitute Eqs.(15) and
(17) into Eq. (16). The time-dependent expectation value of
an observableO is given by

kOstdl = o
hnij

O„hnij…P„hnij;t…. s18d

To compute this quantity in the field-theoretic formalism we
need to introduce the Glauber state:

kSu = k0up
i

eai, kSu0l = 0. s19d

Note that this state is a left eigenstate of the creation operator
with eigenvalue 1, implying that for any normal-ordered
polynomial of the ladder operators one has

kSuQ„hai
†j,haij… = kSuQsh1j,haijd. s20d

Thus we can write expectation value Eq.(18) as

kOstdl = kSuO„haij…uFstdl. s21d

We can write this expectation value as coherent-state path
integral:

kOsTdl =
e p iDĉiDciO„hcij…e−Sfĉi,ci;Tg

e p iDĉiDcie
−Sfĉi,ci;Tg

, s22d

where the action is given by

Sfĉi,ci ;Tg = o
i
SE

0

T

dtFĉistd
]

] t
cistd + Hi„hĉistdj,hcistdj…GD .

s23d

Performing the continuum limit

o
i

→ b−1E dx, cistd → bcsx,td, ĉistd → ĉsx,td,

o
hej

fcestd − cistdg → b3 ]2

] x2csx,td, s24d

we get the action

Sfĉ,c;Tg =E dxFE
0

T

dtSĉsx,tdF ]

] t
− D

]2

] x2Gcsx,td− l0f1

− ĉsx,td2gcsx,td2 + sf1 − ĉsx,tdgĉsx,tdcsx,tdDG ,

s25d

wherel0=bl.

III. PERTURBATION THEORY

In order to study perturbatively this field theory we will
perform a change of variables to rend the action, Eq.(25),
dimensionless:

t → t

s
, x →ÎD

s
x, ĉ → ĉ, c → s

l
c. s26d

This way we get

Ssĉ,cd = e−1E dxdtSĉsx,tdF ]

] t
−

]2

] x2Gcsx,td

− f1 − ĉsx,td2gcsx,td2 + f1 − ĉsx,tdgĉsx,tdcsx,tdD ,

s27d

wheree−1=ÎDs /l0. We will use from now on some stan-
dard results involving functionals and functional integrals in
field theory; they can be seen, for instance, in[9]. The func-
tional Zsĥ ,hd with external sources is

Zsĥ,hd =E Dĉsx,tdDcsx,td

3expF−
1

e
SS+E dxdtfĥsx,tdcsx,td

+ ĉsx,tdhsx,tdgDG . s28d

Using the steepest-descent procedure, we know that the func-
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tional integral, Eq.(28), in the limit e→0 is dominated by
the saddle points

dS

dcsx,td
= ĥsx,td, s29d

dS

dĉsx,td
= hsx,td. s30d

Equations(29) and (30) in the absence of external sources
sh=ĥ=0d are the mean-field equations for the reaction-
diffusion process. We will study perturbatively the functional
integral, Eq. (28), in the neighborhood of the “classical
field”—say, the solutions of the saddle-point equations(29)
and (30): cc,ĉc. Thus we will use the expansion

c = cc + Îex, s31d

ĉ = ĉc + Îex̂, s32d

and expanding the action in powers ofe we find

Ssĉ,cd − hĉ − ĥc

= Ssĉc,ccd − hĉc − ĥcc +
e

2
E dx1dx2dt1dt2

3FU d2S

dcsx1,t1ddcsx2,t2d
U

c=cc

xsx1,t1dxsx2,t2d

+ U d2S

dĉsx1,t1ddĉsx2,t2d
U

ĉ=ĉc

x̂sx1,t1dx̂sx2,t2d

+ U2
d2S

dĉsx1,t1ddcsx2,t2d
U

c=cc,ĉ=ĉc

x̂sx1,t1dxsx2,t2dG
+ Ose3/2d. s33d

It is very important to note at this point that it is the edge of
the front that leads to the marginal stability criterion—say, to
the velocity selection. And the edge of the front is character-
ized by a low occupation number, so we can neglect terms
proportional tox2 andx̂2, which reflect the presence of more
than one particle at the corresponding site, as we consider
this event to be unlikely if we go far enough in the edge. We
can see this clearly if we recall thatx and x̂ are the eigen-
values of the annihilation and creation operators, respec-
tively, and this way any of them squared reflects the possible
presence of two particles in the same place.

The functional integral at this order becomes

Zsĥ,hd , Z0sĥ,hd E Dx̂Dx expS−E dx1dx2dt1dt2

3
d2S

dĉcsx1,t1ddccsx2,t2d
x̂sx1,t1dxsx2,t2dD , s34d

where

Z0sĥ,hd = e„−1/efSsĉc,ccd−ĥcc−ĉchg…, s35d

and therefore

Zsĥ,hd = NZ0sĥ,hdFdet
d2S

dĉcsx1,t1ddccsx2,t2d
G−1

. s36d

The normalization factorN is fixed by the condition
Zs0,0d=1.

The connected generating functionalWsĥ ,hd
=e ln Zsĥ ,hd at this order is then

Wsĥ,hd = W0sĥ,hd + eW1sĥ,hd + Ose2d, s37d

where

W1sĥ,hd = −Ftr lnU d2S

dĉcsx1,t1ddccsx2,t2d
U

ĥ,h

− tr lnU d2S

dĉcsx1,t1ddccsx2,t2d
U

ĥ=h=0
G . s38d

Let us now perform the Legendre transformation

Gsf̂,fd =E dxdtfhsx,tdf̂sx,td + ĥsx,tdfsx,td − W0sĥ,hd

− eW1sĥ,hdg + Ose2d. s39d

At one-loop order the one-particle-irreducible(1PI) func-
tional is

Gsf̂,fd = Ssf̂,fd + eG1sf̂,fd + Ose2d, s40d

with

G1sf̂,fd = trFln
d2S

df̂sx1,t1ddfsx2,t2d
− lnU d2S

df̂df
U

f̂=f=0
G .

s41d

We can interpret the 1PI functional as an effective action that
will lead us to new effective equations of motion:

dG

df
= 0, s42d

dG

df̂
= 0. s43d

In our particular case, the action(27) gives

d2S

df̂df
= s]t − ]xx + 1dd2 + s4f̂f − 2f̂dd2, s44d

whered2=dsx1−x2ddst1− t2d. We conclude, therefore,

G1sf̂,fd =E dxdtkx,tulnf1 + s]t − ]xx + 1d−1s4f̂f − 2f̂dgux,tl

=E dxdtkx,tus]t − ]xx + 1d−1s4f̂f − 2f̂dux,tl, s45d

where we have made use of the low-occupation-number ap-

FIELD THEORY OF PROPAGATING REACTION-… PHYSICAL REVIEW E 70, 041102(2004)

041102-3



proximation for the front edge and a power series expansion
of the logarithm. If we evaluate the matrix element, we get

G1 = CE dxdts4f̂f − 2f̂d, s46d

where the constantC is given by

C =
1

s2pd2 E dpE dw
1

− iw + p2 + 1

=
1

s2pd2 E dpE dwE dtQstde−sp2+1dteiwt

=
1

s2pd2 E dpE dtQstde−sp2+1dtE dweiwt

=
1

s2pd2 E dpE dtQstde−sp2+1dt2pdstd

=
1

4p
E dp

=
1

2b0
, s47d

where we have used the fact thatQs0d=1/2 (this property of
the HeavisideQ function can be found to be more rigorously
proven in[9]) and that the integral over the whole momen-
tum space is the volume of the first Brillouin zone, whereb0
is the dimensionless lattice spacing. Thus the effective action
reads

Gsf̂,fd = Ssf̂,fd + e
1

2b0
E dxdts4f̂f − 2f̂d + Ose2d,

s48d

and the new equations of motion(42) and (43) are

s]t − ]xxdf + 2f̂f2 − 2f̂f + f + e
1

2b0
s4f − 2d = 0,

s49d

− s]t + ]xxdf̂ − 2s1 − f̂2df + s1 − f̂df̂ + e
1

2b0
s4f̂d = 0.

s50d

If we recall that the fieldf represents the expected value of
the front density and that we are everywhere supposing that
we are on the front edge, this quantity should be small
enough to consideref neligible. This way we get thatf̂
=1+2e /b0 solves Eq.(50). Substituting this result into Eq.
(49) and taking into account thatb0=Îs /Db we get

]tf = ]xxf + f − 2f2 +
l

s
. s51d

Note that in this case, contrary to the mean-field approach, a
positive phase propagates into an(infinitesimaly) negative
phase, something that is clearly unphysical. This is the de-
terministic expression of the compact support property of the

front; i.e., the front becomes identically zero at a finite value
of x. Actually, this property has been rigorously proven for
this kind of fronts[10]. In this regime, since there are no
particles, no reaction is possible, and only diffusion from
adjacent sites is allowed, leading to the action

Sdif f =E dxE dtff̂s]t − ]xxdfg. s52d

Since this action is quadratic, it is the effective action to any
order, and this implies that the effective equation of motion
for the front propagation at first order inl /s is

]tf = ]xxf + Sf − 2f2 +
l

s
DQsfd. s53d

This last derivation deserves a further explanation. It may be
surprising to the reader that Eq.(51) performs such an un-
physical behavior, but it is actually what one would expecta
priori . Indeed, the analysis of an effective action commonly
yields a shift of the fixed points of the original one; that is
what has happened here. This suggests that the correct physi-
cal interpretation of the problem should have been that cor-
responding to a moving boundary one. That is, at the begin-
ning, we should have taken into account two different
actions, one for the space full of particles and one for the
empty space, and study the propagation of the boundary be-
tween them. This preserves the physical meaning all along
the derivation. It might be desirable to solve this problem
without splitting it into two parts, something that maybe
could be done by using stochastic differential equations
[12,13].

IV. FRONT PROPAGATION AND VELOCITY SELECTION

To study how the front propagates let us perform the
change of variablesf=u−l /s. At leading order, Eq.(53)
becomes

]tu = ]xxu + su − 2u2dQSu −
l

s
D . s54d

Clearly, the fieldsu and f propagate at the same speed.
Equation (54) was heuristically proposed and studied by
Brunet and Derrida[11], and we will summarize the main
conclusions of their work. We will consider that for suffi-
ciently long times the front will converge to a stationary
shape—that is,usx,td=usx−ctd=uszd—and Eq. (54) be-
comes

u9 + cu8 + su − 2u2dQSu −
l

s
D = 0, s55d

wherec is the dimensionless front speed. We can distinguish
between three regions in the front edge: in the first one, the
equation of motion is given by

u9 + cu8 + u − 2u2 = 0; s56d

in the second one, the field is small enough that we can
linearize to get
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u9 + cu8 + u = 0; s57d

and in the third oneu,l /s, so we get

u9 + cu8 = 0. s58d

We impose as boundary conditions the continuity of the first
derivative between the boundaries of the three different re-
gions. It can be shown[11] that this leads to a dimensionless
velocity

c = 2 −
p2

ln2sl/sd
s59d

at first order inl /s. The front velocity with the correspond-
ing dimensions is thus

v = ÎDsS2 −
p2

ln2sl/sdD . s60d

This correction has already been confirmed in numerical
simulations[11–13], and it shows a very slow convergence
to the mean-field velocity in the limitl /s→0. This shows
that the discreteness of the reaction process strongly shifts
the velocity to a slower one.

As a final remark, we would like to underline that the
cutoff derived is not a particularity of the low-dimensional
topology of the problem. Indeed, if one considers the
d-dimensional problem and performs all the calculations
shown here for the particular cased=1, one arrives at the
dimensionless equation

]tf = ¹2f + Sf − 2f2 +
l

s
DQsfd, s61d

locally describing the edge of the front. The reason for this
independence between the appearance of the cutoff in the
reaction term and the dimensionality of the system is due to
the physical origin of the cutoff. It appears as a consequence
of the physical fact that far enough in the right spatial direc-
tion (the direction of propagation of the front) there must be
no particles. This is, of course, totally independent of the
spatial dimension of the system. However, the effect of the
cutoff on the dynamics of the front does strongly depend on
the dimensionality. In one dimension, we have observed a
strong shift in the velocity of the front, while in two dimen-
sions the effect is even stronger and the presence of the cut-
off is the only cause responsible for the formation of diffu-
sive instabilities[14]. It would be very interesting to analyze
the effects of the cutoff in dimensions aboved=2, to see if

new phenomenology develops or, on the contrary, there is a
return to the mean field.

V. CONCLUSIONS

In this work, we have derived from first principles a field
theory of reaction-diffusion particles, and we have used it to
study reaction-diffusion propagating fronts. This kind of
fronts has been traditionally studied using deterministic
reaction-diffusion equations, like the Fisher equation, which
consider an infinite number of particles. We performed a per-
turbation expansion in the ratio between the annihilation and
birth rates that separates the mean-field regime from the real
discrete process and studied the first-order corrections to the
equation of motion. A cutoff in the reaction term, a mecha-
nism that has already been heuristically proposed, appeared
in a natural way within our formalism and led us to the
velocity corrections already found in numerical simulations.

Our first-principles analytically derived theory also al-
lowed us to understand the fundamental reasons that lead to
the velocity shift. It is the compact support property of the
front—i.e., the fact that the field is identically zero far
enough in the spatial axis—that causes such a dramatic effect
in a pulled front like ours.

It is also interesting to compare this work to a former one
in the same direction[15] which tries to derive a cutoff in the
reaction term, albeit for a different system. The main differ-
ence between both works is, from our point of view, that
while this article concerns a system in continuum space, the
other deals with a lattice. This difference becomes funda-
mental since the calculations were performed using Stra-
tonovich stochastic calculus, valid in the lattice, but ill posed
in a continuum space[16].

Many questions are still to be answered. Different reac-
tion shemes are to be explored; also, the opposite limit(the
annihilation rate large compared to the birth rate) is only
conjectured[13], but not analytically found. Of course, the
higher dimensionality of the front is a very interesting prob-
lem, where new phenomenology does appear, as shown by
Kessler and Levine[14]. We hope that this and former works
will encourage the reader to attempt to solve these and dif-
ferent problems that appear in this subject.
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