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Field theory of propagating reaction-diffusion fronts
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The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the
mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which
fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles
of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive
at results already confirmed by numerical simulations.
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I. INTRODUCTION We will now show that this picture changes strongly when
internal fluctuations effects, due to the finitness and discret-

Reaction-diffusion front propagation in nonequilibrium )
diess of the reactants, are taken into account.

systems is a topic that has been receiving increasing attenti
recently. The numerous possible applications of the theory, II. FIELD THEORY

of systems like flamefgl], bacterial colonie$2], or popula-

tion genetics[3], is of course one of the reasons for this We will consider single-species particlés undergoing
recent interest. One of the most common approaches to thi§actionsA— A+A at ratec andA+A— 0 at rate\. Further,
problem has been the use of deterministic reaction-diffusiofve suppose the particle’s performing a random walk in a
equations, like the Fisher equatif]. This equation, which one-dimensional lattice with lattice spacibgThe exact de-
combines logistic growth with diffusion, is one of the most Scription of the problem is given by the following master
important mathematical models in biology and ecol¢dgly ~ €quation:

In one spatial dimension, the Fisher equation reads dP(n}:t) dP(n:t) dP(n}:t)
1J - 1J 1J
44U =Dd,,U +aU - bU?, (1) dt EI { dt D dt -
One can think of this equation as a mean-field description of dP{n};t)
a reaction-diffusion process of a single species of random + at . (6)
A

walkersA undergoing the reactions of birth— A+A at rate
a and annihilatiorA+A— 0 at rateb/2. The analysis of this with
equation is straightforward. Consider the boundary condi-

tions U—b/a when x— -~ and U—0 whenx—o. Thus dP(ni}; ) = EE [(Ne+DP(...n—1,n+1 1)
the linearly stable phask/a invades the linearly unstable dt b b ° oo T
phase 0. Assuming a stationary front profilix,t)=U(x _np ] 7
-vt)=U(2) and shifting variablesx— \D/ax, t—t/a, and NP(.Mie - D], (@)
U—(a/b)U we get where{e} denotes the set of nearest-neighbor sites adjacent
U"+cU’ +U-U2=0, @) to i andD is the diffusion constant,
N - : dP({n};t)
wherec=v/yDa. The velocity of the front is controlled by ——=| =o[(n-DP(...m—-1,...1)
its edge; this means the region of the front that is closer to dt o
the unstable phas&=0. We can thus linearize Eq2) -nPC..n, .0, (8)
around this value to get
and
U'+cU +U=0. (3)
dP({n};t)

=N +2)(ny+ DP(....m+2, ... 1)
A

The only physically acceptable solution to this equation is
U@ ~e™, 4
and substituting Eqi4) into Eq.(3) we get

dt

_ni(ni—l)P(...,ni, ,t)] (9)

For simplicity we will choose an uncorrelated Poisson distri-
_ 1 bution as initial condition for our master equation:
C=y+— (5
7 o7 "o
= — ~~N(O _O
for arbitrary vy. It is clear that the range of velocities is thus P(n};t=0)=e I_II n!’ (10
c=2, and it was shown that the minimal velocity is selected
in the long-time limit[5]. We can thus conclude that, in this whereN(0) =2;nq;. We can map this master equation descrip-
limit, v=2\Da. tion of the system onto a quantum-field-theoretic problem.
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This connection was first proposed by 061, further eluci- 1.D#Dis oS8T
dated by Peliti[7], and a deep generalization of it can be (O(M) = I ,D«p,DAzp,O({(p,})? : , (22
found in the influencing article by Cardy and Taulp&y. We [ TI,DyDye Tl
Ean write this theory in terms of the second—quantlzedWhere the action is given by
osonic operators
- T 1. 9 -
[a),a]= 4, [a,a]=0, [a/a]]=0, &[0)=0, SURTHRIEDY ( f dt{ GO~ (O + KO LR 0D | ).
(11) I 0
. i, . (23
whose effect is to create or to annihilate particles at the cor-
responding lattice site: Performing the continuum limit
f . = . R -
a1|...,n.,...> |...,n|+l,.-->, (12) E —>b_lfdx, wi(t)_)bdi(x,t)' lﬁi(t)—’lﬁ(xﬁ),
i
al....n,..y=nl...n=-1,..), (13 P
where we have defined the states as ;e} [et) = (D] — bgﬁ Px.0), (24)
Knhy =11 (a)H"o). (14)  we get the action
i

T

. ~ a &>

Thus we can define the time-dependent state vector as  Ju,4;T] = f dx{J dt( z,b(x,t)[a - D&—Xz} (X, t)= N[ 1
0

[D(t) = > P} O} (15) . ) .
s} = PO ) + ol 1 = g(x, ) ]gx, ) w(x,t)ﬂ ,
and claim that it obeys the imaginary time Schrédinger equa-
tion (25)
d wherehg=Db\.
d—tlfl>(t)> =-H|®(), (16)

Ill. PERTURBATION THEORY

with the Hamiltonian In order to study perturbatively this field theory we will

D perform a change of variables to rend the action, 28),
H= E (‘ @{2} a(ac—a) —\[1-(a))]a? dimensionless:
I e
t D ~ N o
+0,[1_ai’r]ai‘rai>_ (17) t— ;, X — ;X, v—, Y- Xl// (26)

. . This way we get
Note that we recover Ed6) if we substitute Eqs(15) and s wayweg

(17) into Eq. (16). The time-dependent expectation value of . ~ - d &
an observabl®© is given by Sy =€ 1f dXd‘( tﬁ(X,t){E - ﬁ]lﬁ(xat)

(0= 2 OnPPin):b. (9 1= X 02002 + [1 = DT ¢<x,t)) ,
To compute this quantity in the field-theoretic formalism we (27)

need to introduce the Glauber state: j— )
where € '=yDo/\o. We will use from now on some stan-

(9= <0|H &%, (30)=0. (19) dard results involving functionals and functional integrals in
i field theory; they can be seen, for instance[9h The func-

. . . . tional Z(7%, n) with external sources is
Note that this state is a left eigenstate of the creation operator (2, m)

with eigenvalue 1, implying that for any normal-ordered R -
polynomial of the ladder operators one has Z(n,m) :J Dy(x,t)Dyh(x,1)
(SQ{a}{a}) = (SQ{1}.{a). (20) 1 )

. . Xexp| - — S+ded[1](x,t)zp(x,t)
Thus we can write expectation value E@8) as €

(0) = (SOap| (). (2) . ,,(X,t)])] | 8
We can write this expectation value as coherent-state path
integral: Using the steepest-descent procedure, we know that the func-
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tional integral, Eq(28), in the limit e—0 is dominated by 7.(3 :e(—l/e[s@c,%)-;,%_[pcn]) 35
the saddle points o(77m) : (35
and therefore

=7 ), 29 -1
sk XY 29 2(7,m) = NZo(, )| det 2 (39

(X1, ty) Se(Xa, 1)

. = 7(x,1). (30) The normalization factorN is fixed by the condition
S(x,1) Z(0,0=1.

The connected generating functionalW(%, 7)
Equations(29) and (30) in the absence of external sources=¢ |n Z(7, n) at this order is then
(p=7=0) are the mean-field equations for the reaction- R R R
diffusion process. We will study perturbatively the functional W(7, 1) = Wo(7, 7) + W;(7,77) + O(€), (37)
integral, Eqg.(28), in the neighborhood of the “classical

) . . ) where
field"—say, the solutions of the saddle-point equati¢29) 5
. ~ . . ~ S
and(30): ¢, ¥.. Thus we will use the expansion Wy(5,7) = - [tr In = - )
lﬂ: ¢c+ \’/;X, (31) lpC(Xl’ 1) wC(XZ' 2) ;]'7]
&S
L _ —trin — . (38
l,b: lp(; + V’ej\(a (32) 5‘/IC(X11tl) 5wC(X21t2) :/]:7720
and expanding the action in powers ofve find Let us now perform the Legendre transformation
S ) = = T(¢,¢) = f dxd{7(x, 1) B(x,t) + Hx,) b(x,t) = Wo(7, 7)
~ ~ ~ € R
=S¢, the) = mipe = mipe + > f dx,dxdt,dt, — éWy(7, )] +O(e?). (39
£ At one-loop order the one-particle-irreducib(@Pl) func-
X XX, t) x (X0, 1) tional is
[ Si(X1,t1) 6YXa, 1) | gy, LXT2 2 R ) R
T(¢,¢) =S¢, ¢) + el'1(, @) + O(&), (40)
5°S - . .
+ = = X(X1,t1) x(X2,tp) with
S(Xq, 1) Sh(X, 1) =i A £ £S
£ I'y(p, ) =tr| In—; -In — .
+ 2— X (X1,t1) x (X2, ) Oep(Xq,t1) Op(Xa, 1) 0O | j=p=0
5¢(X1,t1) 5¢(X21t2) zp:.pc,l}/:;//c (41)
+0(e?). (33)  We can interpret the 1PI functional as an effective action that
. . . . L will lead us to new effective equations of motion:
It is very important to note at this point that it is the edge of
the front that leads to the marginal stability criterion—say, to o _
the velocity selection. And the edge of the front is character- Sp 0, (42
ized by a low occupation number, so we can neglect terms
proportional toy? and 2, which reflect the presence of more ST
than one particle at the corresponding site, as we consider — =0. (43
this event to be unlikely if we go far enough in the edge. We o¢

can see this clearly if we recall thgtand y are the eigen- In our particular case, the actid7) gives
values of the annihilation and creation operators, respec- ’

tively, and this way any of them squared reflects the possible S
presence of two particles in the same place. 5&54)
The functional integral at this order becomes

= (6= Gt D)+ (pp—29)8,, (44

where 8,=8(x; —X,) &(t; —t,). We conclude, therefore,

20n.m) ~ Zo(. ) f DXDX exP(‘ f et Ty(.6) = f AXAEX LI + (0 - G+ 174 - 28I, B

PAS

X &(Xlitl)X(X21t2)> ’ (34)
5¢C(Xlitl) 5¢C(X21 t2)

where where we have made use of the low-occupation-number ap-

= f dxd€, (6 = O+ 1)7H4Bb = 2)[x,1),  (45)
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proximation for the front edge and a power series expansiofront; i.e., the front becomes identically zero at a finite value
of the logarithm. If we evaluate the matrix element, we get of x. Actually, this property has been rigorously proven for
this kind of fronts[10]. In this regime, since there are no
Flch dxdi4dd - 23), (46) particles, no reaction is possible, and only diffusion from
adjacent sites is allowed, leading to the action

where the constar€® is given by N
n 1 Sdiff:jdXJ A (= dx) #1. (52)
C=——|d f aw——
(2m)? f g —iw+p?+1 Since this action is quadratic, it is the effective action to any
1 . order, and this implies that the effective equation of motion
= 2 f dpf dwf dt®(t)e P+t for the front propagation at first order iV o is
A
- (2—717)2 f dp f 0 (tye- Pt f dwe 0= dh+ (¢ 24+ ;) o). (53
1 , This last derivation deserves a further explanation. It may be
= f dpf dte(t)e P27 4(t) surprising to the reader that E¢h1) performs such an un-
(2m) physical behavior, but it is actually what one would expect
1 priori. Indeed, the analysis of an effective action commonly
= in dp yields a shift of the fixed points of the original one; that is
what has happened here. This suggests that the correct physi-
1 cal interpretation of the problem should have been that cor-

(47) responding to a moving boundary one. That is, at the begin-

_ ning, we should have taken into account two different
where we have used the fact that0)=1/2 (this property of  5ctions, one for the space full of particles and one for the
the Heaviside® function can be found to be more rigorously empty space, and study the propagation of the boundary be-
proven in[9]) and that the integral over the whole momen-yween them. This preserves the physical meaning all along
tum space is the volume of the first Brillouin zone, whbge  the derivation. It might be desirable to solve this problem
is the dimensionless lattice spacing. Thus the effective actio@jithout splitting it into two parts, something that maybe
reads could be done by using stochastic differential equations
[12,13.

:2_t)o’

. . 1 . .
[(¢.¢) =S¢ ) + e5 - J dxdi4¢¢ - 2¢) + O(€),
° IV. FRONT PROPAGATION AND VELOCITY SELECTION

(48)
. . To study how the front propagates let us perform the
and the new equations of motigA2) and(43) are change of variablesp=u-\/o. At leading order, Eq(53)
P 1 becomes
(= d) P+ 2 —2¢¢+¢+65(4¢>—2)=0, N
) B o A
(49) AU =3d U+ (u-2u )@(u U). (54)

R R o 1 . Clearly, the fieldsu and ¢ propagate at the same speed.

—(+d)d— 21— p+ (1 - )b+ e—(4¢) =0. Equation (54) was heuristically proposed and studied by
2bo Brunet and Derridg11], and we will summarize the main

(50 conclusions of their work. We will consider that for suffi-

ciently long times the front will converge to a stationary

If we recall that the fieldp represents the expected value Ofas[hape—that is.u(x,t) =U(x-ct)=u(z)—and Eq. (54) be-

the front density and that we are everywhere supposing th
we are on the front edge, this quantity should be smalf°mes
enough to considee¢ neligible. This way we get that , , ) Y
=1+2¢/b, solves Eq.(50). Substituting this result into Eq. u"+cu +(u-2u)0(u- )70 (55
(49) and taking into account thith=+c/Db we get
\ wherec is the dimensionless front speed. We can distinguish
Gp= A+ = 242+ = (51) between three regions in the front edge: in the first one, the
o equation of motion is given by

Not(_a_that in this case, contrary to _th(_e _meqn-field appr_oach, a U +cu +u-202=0; (56)
positive phase propagates into énfinitesimaly) negative

phase, something that is clearly unphysical. This is the dei the second one, the field is small enough that we can
terministic expression of the compact support property of thdinearize to get
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u+cu +u=0; (57) new phenomenology develops or, on the contrary, there is a

) ) return to the mean field.
and in the third onei<\/o, so we get

V. CONCLUSIONS
u"+cu =0. (58)
. . - ) In this work, we have derived from first principles a field
We_lmpose as boundary conquns the continuity pf the f'rsrtheory of reaction-diffusion particles, and we have used it to
derivative between the boundaries of the three different re: ’

. : ; ) study reaction-diffusion propagating fronts. This kind of
\g/(lg(r)l;.t:/t can be showfi1] that this leads to a dimensionless fronts has been traditionally studied using deterministic

reaction-diffusion equations, like the Fisher equation, which
consider an infinite number of particles. We performed a per-
=2-—— (59 turbation expansion in the ratio between the annihilation and
In“(\Mo) bi ) :
irth rates that separates the mean-field regime from the real
at first order in\/ . The front velocity with the correspond- discrete process and studied the first-order corrections to the
ing dimensions is thus equation of motion. A cutoff in the reaction term, a mecha-
nism that has already been heuristically proposed, appeared
_ = in a natural way within our formalism and led us to the
v- \D0<2 - |n2()\/g)>‘ velocity corrections already found in numerical simulations.
Our first-principles analytically derived theory also al-
This correction has already been confirmed in numericalowed us to understand the fundamental reasons that lead to
simulations[11-13, and it shows a very slow convergence the velocity shift. It is the compact support property of the
to the mean-field velocity in the limit/o— 0. This shows front—i.e., the fact that the field is identically zero far

that the discreteness of the reaction process strongly shifisnough in the spatial axis—that causes such a dramatic effect
the velocity to a slower one. in a pulled front like ours.

As a final remark, we would like to underline that the |t is also interesting to compare this work to a former one
cutoff derived is not a particularity of the low-dimensional i, the same directiofiL5] which tries to derive a cutoff in the
topology of the problem. Indeed, if one considers thereaction term, albeit for a different system. The main differ-
d-dimensional problem and performs all the calculationsence between both works is, from our point of view, that
shown here for the particular case=1, one arrives at the while this article concerns a system in continuum space, the

(60)

dimensionless equation other deals with a lattice. This difference becomes funda-
N mental since the calculations were performed using Stra-
hp=V2p+ <¢_ 2¢% + —>®(¢), (61) tonovich stochastic calculus, valid in the lattice, but ill posed

o in a continuum spacgl6].

locally describing the edge of the front. The reason for this. Many questions are siill to b.e answered. D|ﬁ9rent reac-
independence between the appearance of the cutoff in i n.s.her'nes are to be explored, also, the Qppos!te (it
reaction term and the dimensionality of the system is due tgnnyhﬂaﬂon rate large compar_ed to the birth yake only

the physical origin of the cutoff. It appears as a consequenc‘é@njecmred[lg]’ but not analytically found. Of course, the

of the physical fact that far enough in the right spatial direc-gg]he&g?;gﬂ&”gggﬂ%ﬂ;giggg; izoa:age;)‘;;l;taerre;tsinsghg\r:rt])-by
tion (the direction of propagation of the frorthere must be Kessler and Levingl4]. We hope that this and former works

no particles. This is, of course, totally independent of the i th der to att tt ve th d dif
spatial dimension of the system. However, the effect of th Wl encourage the reader 1o attempt 1o Solve these and dit-
erent problems that appear in this subject.

cutoff on the dynamics of the front does strongly depend o
the dimensionality. In one dimension, we have observed a
strong shift in the velocity of the front, while in two dimen-
sions the effect is even stronger and the presence of the cut- This work has been partially supported by the Ministerio
off is the only cause responsible for the formation of diffu- de Educacion y CulturéSpair) through Grant No. AP2001-
sive instabilitieg14]. It would be very interesting to analyze 2598 and by the Ministerio de Ciencia y Tecnolog&pair)
the effects of the cutoff in dimensions abode 2, to see if through Project No. BFM2001-0291.
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